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Fundamental understanding of strongly interacting systems necessarily involves collective modes, but
their nature and evolution is not generally understood in dynamically disordered and strongly interacting
systems such as liquids and supercritical fluids. We report the results of extensive molecular dynamics
simulations and provide direct evidence that liquids develop a gap in a solidlike transverse spectrum in the
reciprocal space, with no propagating modes between zero and a threshold value. In addition to the liquid
state, this result importantly applies to the supercritical state of matter. We show that the emerging gap
increases with the inverse of liquid relaxation time and discuss how the gap affects properties of liquid and
supercritical states.
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Dynamical and thermodynamic properties of an inter-
acting system are governed by collective excitations, or
modes. Collective modes have been studied in depth and
are well understood in solids and gases. This is not the
case for the liquid state where the combination of strong
interactions and dynamical disorder has been thought to
preclude the development of a general theory [1] including
understanding the nature of collective modes.
Collective modes in solids include one longitudinal and

two transverse acoustic modes. In gases, the collective
mode is one longitudinal long-wavelength sound wave
considered in the hydrodynamic approximation. In liquids,
collective modes are well understood in the hydrodynamic
approximation ωτ < 1 [2], where ω is frequency and τ is
liquid relaxation time, the average time it takes for a
molecule to diffuse the distance equal to interatomic
separation [3,4]. Importantly, there is a different regime
of wave propagation: ωτ > 1, where waves propagate in
the constant-structure environment, i.e., in the solidlike
regime. Experiments have reported both indirect and direct
evidence for the existence of solidlike waves in liquids and
have ascertained that they are essentially different from the
hydrodynamic modes [5–17], including those discussed in
generalized hydrodynamics [18,19].
The first proposal regarding solidlike waves in liquids

was due to Frenkel [3], who proposed that, at times smaller
than τ, particles do not jump, and hence the system behaves
like a solid. Therefore, for frequencies larger than

ωF ¼ 1

τ
; ð1Þ

the liquid supports two transverse acoustic modes, as
does the solid (glass or crystal). The longitudinal
acoustic mode is unmodified (except for different
dissipation laws in regimes ωτ > 1 and ωτ < 1 [3]):
density fluctuations exist in any interacting medium,
and in liquids they have been shown to propagate with

wavelengths extending to the shortest interatomic
separation [5,6,10,15–17].
The proposal that liquids are able to support solidlike

transverse modes with frequencies extending to the
highest frequency implies that liquids are similar to solids
in terms of collective excitations. Therefore, main liquid
properties such as energy and heat capacity can be
described using the same first-principles approach based
on collective modes as in solids, an assertion that
was considered unusual in the past when no evidence
for propagating solidlike modes in liquids existed.
Importantly, high-frequency modes are particularly rel-
evant for liquid thermodynamics because, similarly to
solids, they make the largest contribution to system’s
energy and other properties, whereas the contribution of
hydrodynamic modes is negligible [20].
Observed in viscous liquids (see, e.g., Refs. [8,9]), high-

frequency transverse modes were later studied in low-
viscosity liquids on the basis of positive dispersion [6,10,
11,13]. More recently, high-frequency transverse modes
were directly measured in the form of distinct dispersion
branches and verified in computer modeling [5,13–17]. This
has been done at constant temperature and τ.
Although Eq. (1) has been the traditional basis for

understanding solidlike transverse modes in liquids [21],
the crucial question is whether the frequency gap actually
emerges in the liquid transverse spectrum as Eq. (1) and the
conventional picture [21] predict and as more recent work
[22] seems to suggest? Does this gap change with temper-
ature (pressure) as 1=τ? Answering these questions directly
is essential for fundamental understanding of collective
modes in liquids, and for liquid theory in general.
A recent detailed analysis [20] predicts the following

dispersion relationship for liquid transverse modes:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

τ2

r
; ð2Þ
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where k is the absolute value of the vector in the reciprocal
space (the wave vector), c is the speed of transverse sound,
and τ is understood to be the full period of the particles’
jump motion equal to twice Frenkel’s τ.
Interestingly and differently from Eq. (1), Eq. (2) pre-

dicts that liquid transverse acoustic modes will develop a
gap in the reciprocal space between 0 and kgap:

kgap ¼
1

cτ
: ð3Þ

Equations (2) and (3) further predict that the k gap will
increase with temperature because τ decreases.
It is interesting to discuss why the gap develops in k space

rather than in the frequency domain. Equation (2) follows
from our solution of the Navier-Stokes equation extended by
Frenkel to include the solidlike elastic response of liquids at
times shorter than τ. This gives a wave equation with
dissipation, from which Eq. (2) follows [20]. A qualitatively
similar result can also be inferred from generalized hydro-
dynamics, where the hydrodynamic transverse current cor-
relation function is generalized to include large k’s and ω’s
[19]. The approach assumes that the shear viscosity function
K, thememory function for the transverse current correlation
function, exponentially decays with time τ, giving a resonant
frequency in the correlation function. If we now identifyK at
short times with c2, the resonant frequency becomes similar
to Eq. (2). A gap in k space, albeit different from Eq. (3), is
also noted in a different method [23]. Using Eq. (3), wewrite
the condition k > kgap approximately as λ < del, where
del ¼ cτ is the liquid elasticity length, the propagation length
of a shear wave in the liquid [24]. The microscopic meaning
of del follows from noting that liquid particles jump with a
period of τ and hence disrupt thewave continuity at distances
larger than cτ, setting the longest wavelength of propagating
waves. Therefore, the condition k > kgap in Eq. (2) is
consistent with the condition that allowed wavelengths
should be smaller than the wave propagation length [25].
Importantly, we predict that the k gap also emerges in the

supercritical state of matter, the state which has tradition-
ally been viewed as a gray area on the phase diagram with
unknown properties intermediate between gases and
liquids. We previously proposed that solidlike transverse
modes should propagate in supercritical fluids below the
Frenkel line (FL) [20,30–32]. We therefore predict that
supercritical fluids below the FL should also develop the
same gap (3) in the transverse spectrum.
The main aim of this Letter is to obtain direct evidence for

the gap discussed above. We perform extensive molecular
dynamics simulations in different types of liquids and
supercritical fluids, including noble and molecular. We find
that a gap develops in solidlike transverse acoustic spectrum
in reciprocal spacewhich increases with the inverse of liquid
relaxation time. These specific results call for new high-
temperature and pressure experiments.
We have aimed to study the propagation of solidlike

transverse waves in liquids with different structure and

bonding types and have performed molecular dynamics
simulations of noble liquid Ar and molecular CO2 [26].
The pressure was fixed at 40 bar for subcritical Ar, 10 kbar
for supercritical Ar, and 9 kbar for supercritical CO2.
The temperature was extended well above critical for the
last two systems.
We calculate the propagating transverse modes from

transverse current correlation functions [18]: Cðk; tÞ ¼
ðk2=NÞhJxð−k; tÞJxðk; 0Þi ¼ ðk2=NÞhJyð−k; tÞJyðk; 0Þi,
where N is the number of particles, transverse currents
Jðk; tÞ ¼ P

N
j¼1 k × vjðtÞ exp½−ik · rjðtÞ�, v is the particle

velocity, and the wave vector k is along the z axis. The
spectra of transverse currents are calculated as the Fourier
transform of the real part of Cðk; tÞ [the imaginary part
of Cðk; tÞ is calculated to be zero within the error, as
expected]. A smoothing function is often used for the
analysis of Cðk; tÞ in order to reduce the noise [16,17]. To
get better quantitative and model-free results, we choose
not to use the smoothing. Instead, we repeat our simulations
20 times using different starting velocities and average the
results. This produces Cðk; tÞ with reduced noise which
does not change when the number of simulations is
increased. We show examples of Cðk;ωÞ for different peak
frequencies in the Supplemental Material [26].
Our main observation is related to the evolution of

dispersion curves. We plot intensity maps Cðk;ωÞ in Fig. 1
and observe that a gap develops in k space and that the
range of transverse modes progressively shrinks. A maxi-
mum of Cðk;ωÞ at frequency ω is related to a propagating
mode at that frequency and gives a point (k, ω) on the
dispersion curve [18]. We plot dispersion curves in Fig. 2
and observe a detailed evolution of the gap. At the highest
temperature simulated, Cðk;ωÞ becomes not easily dis-
cernable from the noise.
We observe that the gap kgap develops in all systems

simulated. Importantly, the simulated systems where we
detect transverse modes extend into the supercritical state:
our maximal temperature and pressure correspond to
(205.6Pc, 6.3Tc) for Ar and (122.0Pc, 2.0Tc) for CO2.
It has remained unclear whether the supercritical state is
able to support solidlike transverse modes at all, but we
recently proposed that the supercritical state supports
transverse modes below the FL, the line that demarcates
liquidlike and gaslike properties on the phase diagram
[20,30–32]. Below the Frenkel line, particle motion con-
sists of both oscillatory and diffusive components. Above
the line, the oscillatory component of particle motion is
lost, leaving only diffusive motion, as in a gas.
Approaching the line from below approximately corre-
sponds to τ becoming equal to the shortest period of
transverse modes, at which point the system becomes
depleted of all available transverse modes, according to
Eq. (1). Using the previously calculated FL for Ar [30] and
CO2 [33], we find that the propagating solidlike transverse
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modes reported in Fig. 2 correspond to supercritical Ar and
CO2 below the FL.
We note that the intensity of Cðk;ωÞ peaks decreases

with temperature for all mode frequencies, but lower-
frequency peaks decay much faster than higher-frequency
ones. In examples shown in the first figure in the
Supplemental Material [26], both 2 THz and 8 THz
transverse modes show a clear peak at 200 K, but,
whereas the peak of the 2 THz mode almost disappears

at 350 K, the 8 THz mode peak remains pronounced.
This is consistent with the experiments showing that
low-frequency transverse phonons are not detected
[5,15].
We also note that reduced peak intensity of Cðk;ωÞ at

very high temperature, together with the persisting noise,
can obfuscate the criterion of a propagating mode because a
difference between a peak in Cðk;ωÞ at low temperature
and a broad shoulder at high temperature becomes less

FIG. 1. Intensity maps of Cðk;ωÞ for supercritical Ar at (top panel) 250 K, (middle panel) 350 K, and (bottom panel) 450 K and
supercritical CO2 at (top panel) 300 K, (middle panel) 400 K, and (bottom panel) 500 K. The maximal intensity corresponds to the
middle points of the dark red areas and reduces away from them.
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pronounced. However, one can also consider the oscillatory
behavior of Cðk; tÞ an indicator of a propagating mode.
Shown in the second figure in the Supplemental Material
[26], Cðk; tÞ for a k close to the Brillouin pseudoboundary

has minima and oscillatory behavior at 900 and 950 K but
not at 1000 K, even though Cðk;ωÞ shows no maxima in the
temperature range 900–1000 K. In agreement with this, the
temperature of the Frenkel line demarcating propagating and
nonpropagating transverse modes is about 1000 K [30].
We can now directly verify the predictions for the gap

kgap ¼ 1=ðcτÞ in Eq. (3). First, in Fig. 3 we observe either a
nearly linear relationship or a correct trend between kgap
and 1=τ (more computationally consuming CO2 with a
smaller cell size involves a smaller resolution of k and a
larger noise). The increase of the slope of kgap vs 1=τ at
large 1=τ at high temperature is expected because c
decreases with temperature (1=c increases). Second, we
calculate c for each system from the dispersion curves in
the linear regime at small k in Fig. 2 and find them to be in
reasonable agreement with the c extracted from the linear
regime in Fig. 3 for the three systems studied.
Our results are important for understanding liquid thermo-

dynamics. The k gap implies that the energy of transverse
modes can be calculated as Et ¼

R kD
kgap

EðkÞð6N=k3DÞk2dk,
where N is the number of particles, kD is the Debye wave
number, and the factor 6N=k3D is due to 2N transverse modes
between 0 and kD in the solid. Taking EðkÞ ¼ kBT in the
classical case gives

Et ¼ 2NkBT

�
1 −

�
ωF

ωD

�
3
�
; ð4Þ

where ωD ¼ ckD is the Debye frequency.
The same result can be obtained in the Debye model if

we calculate the energy of transverse modes propagating
above the frequency ωF as Eq. (1) predicts, i.e., if we
consider a gap in the frequency spectrum. Indeed, this
energy can be written as

R
ωD
ωF

gðωÞkBTdω, where gðωÞ ¼
ð6N=ω3

DÞω2 is the Debye density of states of the transverse
modes. This gives the same Et as in Eq. (4). As ωF
increases with temperature, the number of transverse modes
decreases, resulting in the decrease of specific heat, in
agreement with the experimental results for many liquids
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FIG. 2. Phonon dispersion curves of (top panel) supercritical
Ar at 200–500 K and 550 K, (middle panel) subcritical liquid Ar
at 85–120 K, and (bottom panel) supercritical CO2 at 300–600 K.
The temperature increment is 30, 5, and 30 K for supercritical
Ar, subcritical liquid Ar, and supercritical CO2, respectively. The
deviation from linearity (the curving over) of dispersion curves at
large k is related to probing the effects comparable to interatomic
separations (in the solid, this corresponds to the curving over of
ω ∝ sin ck at large k). This effect is not accounted for in the theory
leading to thegap inEqs. (2) and (3)because the theory is formulated
in the continuous medium [20] and therefore describes the k gap in
the linear part of the dispersion law.We show k in the range slightly
extending the first pseudo zone boundary (FPZB) at low temper-
ature. As volume and interatomic separation increase with temper-
ature, FPZB shrinks, resulting in a decrease ofω ∝ sin ck at large k
beyond the FPZB. This effect is unrelated to the k gap.
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FIG. 3. The width of the k gap vs 1=τ for subcritical liquid Ar in
the range 85–115 K, supercritical Ar in the range 200–500 K, and
supercritical CO2 in the range 300–600 K.
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and supercritical fluids in a wide temperature range [20,34].
Hence, from the point of view of thermodynamics, the
transverse modes can be considered to have a frequency
gap ωF, in agreement with the original assumption (1).
Writing (2) as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 − E2

F

q
ð5Þ

where E ¼ ℏω and EF ¼ ℏωF, we see that quasiparticles
with energy EF act as filters to suppress the quasiparticle
excitations whose energy pc is below EF. We propose that
the energy-momentum relationship (5) may be of interest in
other areas of physics including quantum field theory.
In summary, we showed that collective modes in liquids

and supercritical fluids develop a k gap in the solidlike
transverse spectrum.
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